Passa ai contenuti principali

Lo studio di funzione

Cos'è e a cosa serve lo studio di funzione?  Lo studio di funzione è un importante strumento dell'analisi matematica per poter comprendere al meglio le caratteristiche di una funzione. Ne discende che chiunque lavori nell'ambito delle scienze esatte deve padroneggiare l'abilità di studiare una funzione. In questo post vedremo come si fa uno studio di funzione, a una o più variabili, portando due esempi. Inoltre, vedremo in qual modo lo studio di una funzione possa essere applicato a un caso reale. Studio di funzione: come si fa? Lo studio di una funzione reale a variabili reali deve passare per i seguenti passi in modo ordinato: Dominio e l'immagine : ponendo le condizioni di esistenza della funzione \(f:D \rightarrow C\) si può comprendere quale sia il suo dominio naturale \(D\). Inoltre, non meno importante è studiare quale sia l'immagine \(\text{Im}\), che può darci utili informazioni. Simmetrie : cerchia

Proponi un contenuto

Benvenuto nella pagina di proposta dei contenuti. Usa i commenti di questa pagina per proporre l'argomento che vorresti leggere in uno dei prossimi post o un'esercizio di matematica o fisica di cui vorresti conoscere la risoluzione. Questa verrà pubblicata in un post apposito, in modo da renderla accessibile a tutti.

Attenzione! Non sono qui per svolgere i tuoi compiti! Non ti mostrerò la soluzione senza prima aver visto come hai provato tu a svolgerlo 😁

Commenti

Post più popolari

Lo studio di funzione

Cos'è e a cosa serve lo studio di funzione?  Lo studio di funzione è un importante strumento dell'analisi matematica per poter comprendere al meglio le caratteristiche di una funzione. Ne discende che chiunque lavori nell'ambito delle scienze esatte deve padroneggiare l'abilità di studiare una funzione. In questo post vedremo come si fa uno studio di funzione, a una o più variabili, portando due esempi. Inoltre, vedremo in qual modo lo studio di una funzione possa essere applicato a un caso reale. Studio di funzione: come si fa? Lo studio di una funzione reale a variabili reali deve passare per i seguenti passi in modo ordinato: Dominio e l'immagine : ponendo le condizioni di esistenza della funzione \(f:D \rightarrow C\) si può comprendere quale sia il suo dominio naturale \(D\). Inoltre, non meno importante è studiare quale sia l'immagine \(\text{Im}\), che può darci utili informazioni. Simmetrie : cerchia

Il teorema di Poisson e la velocità angolare

Il teorema di Poisson  Il teorema di Poisson è un importante risultato della geometria analitica che trova molte applicazioni nella meccanica classica. Grazie a questo teorema si introduce formalmente il concetto di velocità angolare, ovvero la rapidità con la quale un sistema di riferimento tridimensionale ruota rispetto a un altro. Prerequisiti: derivata prodotto vettoriale applicazione lineare matrice ortogonale operatore antisimmetrico Sommario Indice dei contenuti Il teorema Dimostrazione Riferimenti Immagini Il teorema [ torna al menu ] Teorema di Poisson : per ogni \(\vec{\mathbf{u}}(t) \in \mathbb{E}^3\) funzione del tempo \(t \in [t_0,t_1] \subseteq \mathbb{R}\) la cui norma euclidea sia costante esiste uno e un solo vettore \(\vec{\mathbf{\omega}}(t) \in \mathbb{E}^3 \) tale che $

Dividere la spesa in parti uguali? Come si fa

Come si divide una spesa in parti uguali? Marco, Elisa, Saverio e Giovanna hanno comprato cibi e bevande da portare per una festa. Vorrebbero dividersi la spesa totale in modo che ognuno abbia pagato lo stesso prezzo. Sembra l'inizio di un problema di matematica trovato in qualche libro scolastico, ma è un problema da affrontare piuttosto comune e controintuitivamente complesso. In questo post proveremo a sviluppare una teoria matematica che ci permetta di risolvere il problema della divisione della spesa tra un certo numero di persone. Indice dei contenuti La teoria Formulazione del problema In conclusione Esempio Immagini La teoria            [ torna al menu ] Formulazione del problema            [ torna al menu ] Immaginiamo questa situazione: \(n\) person